Role of hydrophilic residues in proton transfer during catalysis by human carbonic anhydrase II.
نویسندگان
چکیده
Catalysis by the zinc metalloenzyme human carbonic anhydrase II (HCA II) is limited in maximal velocity by proton transfer between His64 and the zinc-bound solvent molecule. Asn62 extends into the active site cavity of HCA II adjacent to His64 and has been shown to be one of several hydrophilic residues participating in a hydrogen-bonded solvent network within the active site. We compared several site-specific mutants of HCA II with replacements at position 62 (Ala, Val, Leu, Thr, and Asp). The efficiency of catalysis in the hydration of CO 2 for the resulting mutants has been characterized by (18)O exchange, and the structures of the mutants have been determined by X-ray crystallography to 1.5-1.7 A resolution. Each of these mutants maintained the ordered water structure observed by X-ray crystallography in the active site cavity of wild-type HCA II; hence, this water structure was not a variable in comparing with wild type the activities of mutants at residue 62. Crystal structures of wild-type and N62T HCA II showed both an inward and outward orientation of the side chain of His64; however, other mutants in this study showed predominantly inward (N62A, N62V, N62L) or predominantly outward (N62D) orientations of His64. A significant role of Asn62 in HCA II is to permit two conformations of the side chain of His64, the inward and outward, that contributes to maximal efficiency of proton transfer between the active site and solution. The site-specific mutant N62D had a mainly outward orientation of His64, yet the difference in p K a between the proton donor His64 and zinc-bound hydroxide was near zero, as in wild-type HCA II. The rate of proton transfer in catalysis by N62D HCA II was 5% that of wild type, showing that His64 mainly in the outward orientation is associated with inefficient proton transfer compared with His64 in wild type which shows both inward and outward orientations. These results emphasize the roles of the residues of the hydrophilic side of the active site cavity in maintaining efficient catalysis by carbonic anhydrase.
منابع مشابه
Speeding up proton transfer in a fast enzyme: kinetic and crystallographic studies on the effect of hydrophobic amino acid substitutions in the active site of human carbonic anhydrase II.
Catalysis of the hydration of CO2 by human carbonic anhydrase isozyme II (HCA II) is sustained at a maximal catalytic turnover of 1 mus-1 by proton transfer between a zinc-bound solvent and bulk solution. This mechanism of proton transfer is facilitated via the side chain of His64, which is located 7.5 A from the zinc, and mediated via intervening water molecules in the active-site cavity. Thre...
متن کاملKinetic analysis of multiple proton shuttles in the active site of human carbonic anhydrase.
We have prepared a site-specific mutant of human carbonic anhydrase (HCA) II with histidine residues at positions 7 and 64 in the active site cavity. Using a different isozyme, we have placed histidine residues in HCA III at positions 64 and 67 and in another mutant at positions 64 and 7. Each of these histidine residues can act as a proton transfer group in catalysis when it is the only nonlig...
متن کاملProton transfer from exogenous donors in catalysis by human carbonic anhydrase II.
In the site-specific mutant of human carbonic anhydrase in which the proton shuttle His64 is replaced with alanine, H64A HCA II, catalysis can be activated in a saturable manner by the proton donor 4-methylimidazole (4-MI). From 1H NMR relaxivities, we found 4-MI bound as a second-shell ligand of the tetrahedrally coordinated cobalt in Co(II)-substituted H64A HCA II, with 4-MI located about 4.5...
متن کاملJoint neutron crystallographic and NMR solution studies of Tyr residue ionization and hydrogen bonding: Implications for enzyme-mediated proton transfer.
Human carbonic anhydrase II (HCA II) uses a Zn-bound OH(-)/H2O mechanism to catalyze the reversible hydration of CO2. This catalysis also involves a separate proton transfer step, mediated by an ordered solvent network coordinated by hydrophilic residues. One of these residues, Tyr7, was previously shown to be deprotonated in the neutron crystal structure at pH 10. This observation indicated th...
متن کاملComparison of 18O exchange catalyzed by isoenzymes of carbonic anhydrase.
We compare the effect of buffers on the catalysis by bovine carbonic anhydrase, human carbonic anhydrase C (HCA 0, and human carbonic anhydrase B (HCA B) of two types of ‘“0 exchange. Type I, resulting from the hydrationdehydration reaction, is the exchange of IsO between CO, and water. Type II is the exchange of IsO between ‘*Ccontaining and ‘“C-containing species of COZ. Imidazole, 2,4-lutidi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 47 46 شماره
صفحات -
تاریخ انتشار 2008